Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.197
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1327083, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562964

RESUMO

Background: Gut microbiota has been associated with dermatological problems in earlier observational studies. However, it is unclear whether gut microbiota has a causal function in dermatological diseases. Methods: Thirteen dermatological diseases were the subject of bidirectional Mendelian randomization (MR) research aimed at identifying potential causal links between gut microbiota and these diseases. Summary statistics for the Genome-Wide Association Study (GWAS) of gut microbiota and dermatological diseases were obtained from public datasets. With the goal of evaluating the causal estimates, five acknowledged MR approaches were utilized along with multiple testing corrections, with inverse variance weighted (IVW) regression serving as the main methodology. Regarding the taxa that were causally linked with dermatological diseases in the forward MR analysis, reverse MR was performed. A series of sensitivity analyses were conducted to test the robustness of the causal estimates. Results: The combined results of the five MR methods and sensitivity analysis showed 94 suggestive and five significant causal relationships. In particular, the genus Eubacterium_fissicatena_group increased the risk of developing psoriasis vulgaris (odds ratio [OR] = 1.32, pFDR = 4.36 × 10-3), family Bacteroidaceae (OR = 2.25, pFDR = 4.39 × 10-3), genus Allisonella (OR = 1.42, pFDR = 1.29 × 10-2), and genus Bacteroides (OR = 2.25, pFDR = 1.29 × 10-2) increased the risk of developing acne; and the genus Intestinibacter increased the risk of urticaria (OR = 1.30, pFDR = 9.13 × 10-3). A reverse MR study revealed insufficient evidence for a significant causal relationship. In addition, there was no discernible horizontal pleiotropy or heterogeneity. Conclusion: This study provides novel insights into the causality of gut microbiota in dermatological diseases and therapeutic or preventive paradigms for cutaneous conditions.


Assuntos
Acne Vulgar , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Bacteroides/genética
2.
Sci Total Environ ; 927: 172251, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604355

RESUMO

Animal hosts harbor diverse assemblages of microbial symbionts that play crucial roles in the host's lifestyle. The link between microbial symbiosis and host development remains poorly understood. In particular, little is known about the adaptive evolution of gut bacteria in host-microbe symbioses. Recently, symbiotic relationships have been categorized as open, closed, or mixed, reflecting their modes of inter-host transmission and resulting in distinct genomic features. Members of the genus Bacteroides are the most abundant human gut microbiota and possess both probiotic and pathogenic potential, providing an excellent model for studying pan-genome evolution in symbiotic systems. Here, we determined the complete genome of an novel clinical strain PL2022, which was isolated from a blood sample and performed pan-genome analyses on a representative set of Bacteroides cellulosilyticus strains to quantify the influence of the symbiotic relationship on the evolutionary dynamics. B. cellulosilyticus exhibited correlated genomic features with both open and closed symbioses, suggesting a mixed symbiosis. An open pan-genome is characterized by abundant accessory gene families, potential horizontal gene transfer (HGT), and diverse mobile genetic elements (MGEs), indicating an innovative gene pool, mainly associated with genomic islands and plasmids. However, massive parallel gene loss, weak purifying selection, and accumulation of positively selected mutations were the main drivers of genome reduction in B. cellulosilyticus. Metagenomic read recruitment analyses showed that B. cellulosilyticus members are globally distributed and active in human gut habitats, in line with predominant vertical transmission in the human gut. However, existence and/or high abundance were also detected in non-intestinal tissues, other animal hosts, and non-host environments, indicating occasional horizontal transmission to new niches, thereby creating arenas for the acquisition of novel genes. This case study of adaptive evolution under a mixed host-microbe symbiosis advances our understanding of symbiotic pan-genome evolution. Our results highlight the complexity of genetic evolution in this unusual intestinal symbiont.


Assuntos
Bacteroides , Microbioma Gastrointestinal , Genoma Bacteriano , Simbiose , Microbioma Gastrointestinal/genética , Bacteroides/genética , Bacteroides/fisiologia , Humanos , Evolução Molecular , Transferência Genética Horizontal
3.
Food Funct ; 15(7): 3327-3339, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38465411

RESUMO

Bacteroides is a common intestinal bacterium closely associated with host colitis. However, relevant studies have been focused on the genus level, which could not identify the major Bacteroides species associated with intestinal disease. Thus, we have evaluated the Bacteroides species structure in healthy people and mouse intestinal tracts and explored the change in major Bacteroides species during colitis development. The results demonstrated that B. uniformis with a high abundance in the intestinal tract of healthy people and mice may be a core species that contributes to colitis remission. The results of animal experiments reported that B. uniformis FNMHLBE1K1 (1K1) could alleviate the severity of colitis and enhance the expression of the tight junction protein occludin by regulating gut microbiota. Notably, the protective roles of 1K1 may be attributed to some specific genes. This study revealed that B. uniformis is a key microbe influencing the occurrence and development of colitis and it provides a scientific basis for screening the next generation of probiotics.


Assuntos
Colite Ulcerativa , Colite , Humanos , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/genética , Colite Ulcerativa/microbiologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Bacteroides/genética , Intestinos , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo
4.
Front Cell Infect Microbiol ; 14: 1288222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404289

RESUMO

Background: Graves' disease (GD) is the most common cause of hyperthyroidism, and its pathogenesis remains incompletely elucidated. Numerous studies have implicated the gut microbiota in the development of thyroid disorders. This study employs Mendelian randomization analysis to investigate the characteristics of gut microbiota in GD patients, aiming to offer novel insights into the etiology and treatment of Graves' disease. Methods: Two-sample Mendelian randomization (MR) analysis was employed to assess the causal relationship between Graves' disease and the gut microbiota composition. Gut microbiota data were sourced from the international consortium MiBioGen, while Graves' disease data were obtained from FINNGEN. Eligible single nucleotide polymorphisms (SNPs) were selected as instrumental variables. Multiple analysis methods, including inverse variance-weighted (IVW), MR-Egger regression, weighted median, weighted mode, and MR-RAPS, were utilized. Sensitivity analyses were conducted employing MR-Egger intercept test, Cochran's Q test, and leave-one-out analysis as quality control measures. Results: The Mendelian randomization study conducted in a European population revealed a decreased risk of Graves' disease associated with Bacteroidaceae (Odds ratio (OR) [95% confidence interval (CI)]: 0.89 [0.89 ~ 0.90], adjusted P value: <0.001), Bacteroides (OR: [95% CI]: 0.555 [0.437 ~ 0.706], adjusted P value: <0.001), and Veillonella (OR [95% CI]: 0.632 [0.492 ~ 0.811], adjusted P value: 0.016). No significant evidence of heterogeneity, or horizontal pleiotropy was detected. Furthermore, the preliminary MR analysis identified 13 bacterial species including Eubacterium brachy group and Family XIII AD3011 group, exhibiting significant associations with Graves' disease onset, suggesting potential causal effects. Conclusion: A causal relationship exists between gut microbiota and Graves' disease. Bacteroidaceae, Bacteroides, and Veillonella emerge as protective factors against Graves' disease development. Prospective probiotic supplementation may offer a novel avenue for adjunctive treatment in the management of Graves' disease in the future.


Assuntos
Bacteroidaceae , Doença de Graves , Humanos , Bacteroides/genética , Veillonella , Estudos Prospectivos , Doença de Graves/genética , Estudo de Associação Genômica Ampla
5.
Appl Microbiol Biotechnol ; 108(1): 213, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358546

RESUMO

Type 2 diabetes mellitus (T2DM) was reported to be associated with impaired immune response and alterations in microbial composition and function. However, the underlying mechanism remains elusive. To investigate the association among retinoic acid-inducible gene-I-like receptors (RLRs) signaling pathway, intestinal bacterial microbiome, microbial tryptophan metabolites, inflammation, and a longer course of T2DM, 14 patients with T2DM and 7 healthy controls were enrolled. 16S rRNA amplicon sequencing and untargeted metabolomics were utilized to analyze the stool samples. RNA sequencing (RNA-seq) was carried out on the peripheral blood samples. Additionally, C57BL/6J specific pathogen-free (SPF) mice were used. It was found that the longer course of T2DM could lead to a decrease in the abundance of probiotics in the intestinal microbiome. In addition, the production of microbial tryptophan derivative skatole declined as a consequence of the reduced abundance of related intestinal microbes. Furthermore, low abundances of probiotics, such as Bacteroides and Faecalibacterium, could trigger the inflammatory response by activating the RLRs signaling pathway. The increased level of the member of TNF receptor-associated factors (TRAF) family, nuclear factor kappa-B (NF-κB) activator (TANK), in the animal colon activated nuclear factor kappa B subunit 2 (NFκB2), resulting in inflammatory damage. In summary, it was revealed that the low abundances of probiotics could activate the RLR signaling pathway, which could in turn activate its downstream signaling pathway, NF-κB, highlighting a relationship among gut microbes, inflammation, and a longer course of T2DM. KEY POINTS: Hyperglycemia may suppress tryptophanase activity. The low abundance of Bacteroides combined with the decrease of Dopa decarboxylase (DDC) activity may lead to the decrease of the production of tryptophan microbial derivative skatole, and the low abundance of Bacteroides or reduced skatole may further lead to the increase of blood glucose by downregulating the expression of glucagon-like peptide-1 (GLP1). A low abundance of anti-inflammatory bacteria may induce an inflammatory response by triggering the RLR signaling pathway and then activating its downstream NF-κB signaling pathway in prolonged T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Camundongos , Animais , Humanos , Camundongos Endogâmicos C57BL , NF-kappa B , RNA Ribossômico 16S/genética , Escatol , Triptofano , Inflamação , Bacteroides/genética
6.
Nat Commun ; 15(1): 1605, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383538

RESUMO

Gut microbiota can adapt to their host environment by rapidly acquiring new mutations. However, the dynamics of this process are difficult to characterize in dominant gut species in their complex in vivo environment. Here we show that the fine-scale dynamics of genome-wide transposon libraries can enable quantitative inferences of these in vivo evolutionary forces. By analyzing >400,000 lineages across four human Bacteroides strains in gnotobiotic mice, we observed positive selection on thousands of cryptic variants - most of which were unrelated to their original gene knockouts. The spectrum of fitness benefits varied between species, and displayed diverse tradeoffs over time and in different dietary conditions, enabling inferences of their underlying function. These results suggest that within-host adaptations arise from an intense competition between numerous contending variants, which can strongly influence their emergent evolutionary tradeoffs.


Assuntos
Bacteroides , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Bacteroides/genética , Bactérias/genética , Microbioma Gastrointestinal/genética , Evolução Biológica
7.
ACS Synth Biol ; 13(2): 648-657, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38224571

RESUMO

The genus Bacteroides, a predominant group in the human gut microbiome, presents significant potential for microbiome engineering and the development of live biotherapeutics aimed at treating gut diseases. Despite its promising capabilities, tools for effectively engineering Bacteroides species have been limited. In our study, we have made a breakthrough by identifying novel signal peptides in Bacteroides thetaiotaomicron and Akkermansia muciniphila. These peptides facilitate efficient protein transport across cellular membranes in Bacteroides, a critical step for therapeutic applications. Additionally, we have developed an advanced episomal plasmid system. This system demonstrates superior protein secretion capabilities compared to traditional chromosomal integration plasmids, making it a vital tool for enhancing the delivery of therapeutic proteins in Bacteroides species. Initially, the stability of this episomal plasmid posed a challenge; however, we have overcome this by incorporating an essential gene-based selection system. This novel strategy not only ensures plasmid stability but also aligns with the growing need for antibiotic-free selection methods in clinical settings. Our work, therefore, not only provides a more robust secretion system for Bacteroides but also sets a new standard for the development of live biotherapeutics.


Assuntos
Bacteroides thetaiotaomicron , Bacteroides , Humanos , Bacteroides/genética , Bacteroides/metabolismo , Sinais Direcionadores de Proteínas/genética , Plasmídeos/genética , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/metabolismo , Transporte Proteico
8.
mBio ; 15(2): e0314423, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38179971

RESUMO

Persons with cystic fibrosis (CF), starting in early life, show intestinal microbiome dysbiosis characterized in part by a decreased relative abundance of the genus Bacteroides. Bacteroides is a major producer of the intestinal short chain fatty acid propionate. We demonstrate here that cystic fibrosis transmembrane conductance regulator-defective (CFTR-/-) Caco-2 intestinal epithelial cells are responsive to the anti-inflammatory effects of propionate. Furthermore, Bacteroides isolates inhibit the IL-1ß-induced inflammatory response of CFTR-/- Caco-2 intestinal epithelial cells and do so in a propionate-dependent manner. The introduction of Bacteroides-supplemented stool from infants with cystic fibrosis into the gut of CftrF508del mice results in higher propionate in the stool as well as the reduction in several systemic pro-inflammatory cytokines. Bacteroides supplementation also reduced the fecal relative abundance of Escherichia coli, indicating a potential interaction between these two microbes, consistent with previous clinical studies. For a Bacteroides propionate mutant in the mouse model, pro-inflammatory cytokine KC is higher in the airway and serum compared with the wild-type (WT) strain, with no significant difference in the absolute abundance of these two strains. Taken together, our data indicate the potential multiple roles of Bacteroides-derived propionate in the modulation of systemic and airway inflammation and mediating the intestinal ecology of infants and children with CF. The roles of Bacteroides and the propionate it produces may help explain the observed gut-lung axis in CF and could guide the development of probiotics to mitigate systemic and airway inflammation for persons with CF.IMPORTANCEThe composition of the gut microbiome in persons with CF is correlated with lung health outcomes, a phenomenon referred to as the gut-lung axis. Here, we demonstrate that the intestinal microbe Bacteroides decreases inflammation through the production of the short-chain fatty acid propionate. Supplementing the levels of Bacteroides in an animal model of CF is associated with reduced systemic inflammation and reduction in the relative abundance of the opportunistically pathogenic group Escherichia/Shigella in the gut. Taken together, these data demonstrate a key role for Bacteroides and microbially produced propionate in modulating inflammation, gut microbial ecology, and the gut-lung axis in cystic fibrosis. These data support the role of Bacteroides as a potential probiotic in CF.


Assuntos
Fibrose Cística , Criança , Lactente , Humanos , Camundongos , Animais , Fibrose Cística/complicações , Regulador de Condutância Transmembrana em Fibrose Cística , Propionatos , Bacteroides/genética , Células CACO-2 , Inflamação/complicações , Modelos Animais de Doenças , Disbiose/complicações , Escherichia coli
9.
mBio ; 15(2): e0240923, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38236049

RESUMO

Sphingolipids serve as vital structural and signaling components of the cell membranes in both eukaryotes and prokaryotes. Within the gut microbiome, Bacteroides species have been identified as major producers of sphingolipids, and Bacteroides-produced sphingolipids have been shown to be modulators of host immune and metabolic functions. While Bacteroides species are a prominent feature of the gut microbiomes of populations living in industrialized countries, Prevotella copri, a member of the same phyla, albeit a different family, is the dominant feature across the remainder of the global population, although their sphingolipid-producing capabilities have not been as thoroughly investigated. To fill this gap, we examined the genomes of over 60 diverse isolates of P. copri and identified several key enzymes involved in sphingolipid synthesis in P. copri. Combining bioorthogonal labeling and liquid chromatography-mass spectrometry (LC-MS) based lipidomics, we functionally characterized the first step in P. copri de novo sphingolipid synthesis in addition to profiling the sphingolipidomes of P. copri strains, identifying key enzymes that may play roles in producing a diverse set of P. copri sphingolipids. Given the limited genetic engineering tools amenable for use in P. copri, our approach takes advantage of comparative genomics and phenotypic profiling to explore sphingolipid production in these understudied, yet highly prevalent, organisms.IMPORTANCESphingolipids are important signaling molecules for maintaining metabolic and immune homeostasis in the host. These lipids are also produced by gut commensals, most notably by Bacteroides species. Despite the global prevalence of Prevotella copri in gut microbiomes of individuals, little is known about the types of sphingolipids they produce and whether they are similar in composition and structure to those produced by Bacteroides. Given the varied associations of P. copri with diverse sphingolipid-related health outcomes, such as rheumatoid arthritis and glucose intolerance, it is important to first characterize the specific sphingolipids produced by individual strains of P. copri and to identify the genes involved in their pathways of production. This characterization of P. copri-derived sphingolipids provides further insight into how bacterial sphingolipid production can serve as a mechanism for microbial modulation of host phenotypes.


Assuntos
Microbioma Gastrointestinal , Esfingolipídeos , Humanos , Prevotella/genética , Eucariotos/metabolismo , Microbioma Gastrointestinal/genética , Bacteroides/genética , Bacteroides/metabolismo
10.
mBio ; 15(2): e0278723, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38259081

RESUMO

Tetracyclines serve as broad-spectrum antibiotics to treat bacterial infections. The discovery of new tetracycline resistance genes has led to new questions about the underlying mechanisms of resistance, gene transfer, and their relevance to human health. We tracked changes in the abundance of a 55-kbp conjugative transposon (CTn214) carrying tetQ, a tetracycline resistance gene, within a Bacteroides fragilis metagenome-assembled genome derived from shotgun sequencing of microbial DNA extracted from the ileal pouch of a patient with ulcerative colitis. The mapping of metagenomic reads to CTn214 revealed the multi-copy nature of a 17,044-nt region containing tetQ in samples collected during inflammation and uninflamed visits. B. fragilis cultivars isolated from the same patient during periods of inflammation harbored CTn214 integrated into the chromosome or both a circular, multi-copy, extrachromosomal region of the CTn214 containing tetQ and the corresponding integrated form. The tetracycline-dependent mechanism for the transmission of CTn214 is nearly identical to a common conjugative transposon found in the genome of B. fragilis (CTnDOT), but the autonomously amplified nature of a circular 17,044-nt region of CTn214 that codes for tetQ and the integration of the same sequence in the linear chromosome within the same cell is a novel observation. Genome and transcriptome sequencing of B. fragilis cultivars grown under different concentrations of tetracycline and ciprofloxacin indicates that tetQ in strains containing the circular form remains actively expressed regardless of treatment, while the expression of tetQ in strains containing the linear form increases only in the presence of tetracycline.IMPORTANCEThe exchange of antibiotic production and resistance genes between microorganisms can lead to the emergence of new pathogens. In this study, short-read mapping of metagenomic samples taken over time from the illeal pouch of a patient with ulcerative colitis to a Bacteroides fragilis metagenome-assembled genome revealed two distinct genomic arrangements of a novel conjugative transposon, CTn214, that encodes tetracycline resistance. The autonomous amplification of a plasmid-like circular form from CTn214 that includes tetQ potentially provides consistent ribosome protection against tetracycline. This mode of antibiotic resistance offers a novel mechanism for understanding the emergence of pathobionts like B. fragilis and their persistence for extended periods of time in patients with inflammatory bowel disease.


Assuntos
Colite Ulcerativa , Tetraciclina , Humanos , Tetraciclina/farmacologia , Bacteroides/genética , Colite Ulcerativa/genética , Elementos de DNA Transponíveis , Conjugação Genética , Plasmídeos/genética , Antibacterianos/farmacologia , Bacteroides fragilis/genética , Inflamação/genética
11.
Nat Commun ; 15(1): 105, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167825

RESUMO

The infant gut microbiome is impacted by early-life feeding, as human milk oligosaccharides (HMOs) found in breastmilk cannot be digested by infants and serve as nutrients for their gut bacteria. While the vast majority of HMO-utilization research has focused on Bifidobacterium species, recent studies have suggested additional HMO-utilizers, mostly Bacteroides, yet their utilization mechanism is poorly characterized. Here, we investigate Bacteroides dorei isolates from breastfed-infants and identify that polysaccharide utilization locus (PUL) 33 enables B. dorei to utilize sialylated HMOs. We perform transcriptional profiling and identity upregulated genes when growing on sialylated HMOs. Using CRISPR-Cas12 to knock-out four PUL33 genes, combined with complementation assays, we identify GH33 as the critical gene in PUL33 for sialylated HMO-utilization. This demonstration of an HMO-utilization system by Bacteroides species isolated from infants opens the way to further characterization of additional such systems, to better understand HMO-utilization in the infant gut.


Assuntos
Sistemas CRISPR-Cas , Leite Humano , Lactente , Humanos , Sistemas CRISPR-Cas/genética , Oligossacarídeos , Bacteroides/genética
12.
Anaerobe ; 85: 102819, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215933

RESUMO

Microbial communities play a significant role in maintaining ecosystems in a healthy homeostasis. Presently, in the human gastrointestinal tract, there are certain taxonomic groups of importance, though there is no single species that plays a keystone role. Bacteroides spp. are known to be major players in the maintenance of eubiosis in the human gastrointestinal tract. Here we review the critical role that Bacteroides play in the human gut, their potential pathogenic role outside of the gut, and their various methods of adapting to the environment, with a focus on data for B. fragilis and B. thetaiotaomicron. Bacteroides are anaerobic non-sporing Gram negative organisms that are also resistant to bile acids, generally thriving in the gut and having a beneficial relationship with the host. While they are generally commensal organisms, some Bacteroides spp. can be opportunistic pathogens in scenarios of GI disease, trauma, cancer, or GI surgery, and cause infection, most commonly intra-abdominal infection. B. fragilis can develop antimicrobial resistance through multiple mechanisms in large part due to its plasticity and fluid genome. Bacteroidota (formerly, Bacteroidetes) have a very broad metabolic potential in the GI microbiota and can rapidly adapt their carbohydrate metabolism to the available nutrients. Gastrointestinal Bacteroidota species produce short-chain fatty acids such as succinate, acetate, butyrate, and occasionally propionate, as the major end-products, which have wide-ranging and many beneficial influences on the host. Bacteroidota, via bile acid metabolism, also play a role in in colonization-resistance of other organisms, including Clostridioides difficile, and maintenance of gut integrity.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Bacteroides/genética , Trato Gastrointestinal , Ácidos e Sais Biliares/farmacologia
13.
Microbiol Spectr ; 12(1): e0357623, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38018975

RESUMO

IMPORTANCE: Recent work on bile salt hydrolases (BSHs) in Gram-negative bacteria, such as Bacteroides, has primarily focused on how they can impact host physiology. However, the benefits bile acid metabolism confers to the bacterium that performs it are not well understood. In this study, we set out to define if and how Bacteroides thetaiotaomicron (B. theta) uses its BSHs and hydroxysteroid dehydrogenase to modify bile acids to provide a fitness advantage for itself in vitro and in vivo. Genes encoding bile acid-altering enzymes were able to impact how B. theta responds to nutrient limitation in the presence of bile acids, specifically carbohydrate metabolism, affecting many polysaccharide utilization loci. This suggests that B. theta may be able to shift its metabolism, specifically its ability to target different complex glycans including host mucin, when it comes into contact with specific bile acids in the gut.


Assuntos
Bacteroides thetaiotaomicron , Bacteroides thetaiotaomicron/genética , Transcriptoma , Ácidos e Sais Biliares , Bacteroides/genética , Bacteroides/metabolismo , Polissacarídeos/metabolismo , Bactérias/genética
14.
FEBS J ; 291(3): 584-595, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37845429

RESUMO

Efficient recognition and transportation of chitin oligosaccharides are crucial steps for the utilization of chitin by heterotrophic bacteria. In this study, we employed structural biological and biochemical approaches to investigate the substrate recognition and acquisition mechanism of a novel chitin-binding SusD-like protein, AqSusD, which is derived from the chitin utilization gene cluster of a marine Bacteroides strain (Aquimarina sp. SCSIO 21287). We resolved the crystal structures of the AqSusD apo-protein and its complex with chitin oligosaccharides. Our results revealed that some crucial residues (Gln67, Phe87, and Asp276) underwent significant conformational changes to form tighter substrate binding sites for ligand binding. Moreover, we identified the functions of key amino acid residues and discovered that π-π stacking and hydrogen bonding between AqSusD and the ligand played significant roles in recognition of the protein for chitin oligosaccharide binding. Based on our findings and previous investigations, we put forward a model for the mechanism of chitin oligosaccharide recognition, capture, and transport by AqSusD, in collaboration with the membrane protein AqSusC. Our study deepens the understanding of the molecular-level "selfish" use of polysaccharides such as chitin by Bacteroides.


Assuntos
Bacteroidetes , Quitina , Quitina/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Ligantes , Polissacarídeos/metabolismo , Oligossacarídeos/metabolismo , Bacteroides/genética , Bacteroides/metabolismo
16.
Front Immunol ; 14: 1277351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090578

RESUMO

Introduction: Adenoid hypertrophy (AH) is a common upper respiratory disorder in children. Disturbances of gut microbiota have been implicated in AH. However, the interplay of alteration of gut microbiome and enlarged adenoids remains elusive. Methods: 119 AH children and 100 healthy controls were recruited, and microbiome profiling of fecal samples in participants was performed using 16S rRNA gene sequencing. Fecal microbiome transplantation (FMT) was conducted to verify the effects of gut microbiota on immune response in mice. Results: In AH individuals, only a slight decrease of diversity in bacterial community was found, while significant changes of microbial composition were observed between these two groups. Compared with HCs, decreased abundances of Akkermansia, Oscillospiraceae and Eubacterium coprostanoligenes genera and increased abundances of Bacteroides, Faecalibacterium, Ruminococcus gnavus genera were revealed in AH patients. The abundance of Bacteroides remained stable with age in AH children. Notably, a microbial marker panel of 8 OTUs were identified, which discriminated AH from HC individuals with an area under the curve (AUC) of 0.9851 in the discovery set, and verified in the geographically different validation set, achieving an AUC of 0.9782. Furthermore, transfer of mice with fecal microbiota from AH patients dramatically reduced the proportion of Treg subsets within peripheral blood and nasal-associated lymphoid tissue (NALT) and promoted the expansion of Th2 cells in NALT. Conclusion: These findings highlight the effect of the altered gut microbiota in the AH pathogenesis.


Assuntos
Tonsila Faríngea , Microbioma Gastrointestinal , Microbiota , Criança , Humanos , Animais , Camundongos , Microbioma Gastrointestinal/fisiologia , RNA Ribossômico 16S/genética , Hipertrofia , Bacteroides/genética
17.
Arch Microbiol ; 206(1): 19, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086977

RESUMO

Obesity is a global health threat that causes various complications such as type 2 diabetes and nonalcoholic fatty liver disease. Gut microbiota is closely related to obesity. In particular, a higher Firmicutes to Bacteroidetes ratio has been reported as a biomarker of obesity, suggesting that the phylum Bacteroidetes may play a role in inhibiting obesity. Indeed, the genus Bacteroides was enriched in the healthy subjects based on metagenome analysis. In this study, we determined the effects of Bacteroides stercoris KGMB02265, a species belonging to the phylum Bacteroidetes, on obesity both in vitro and in vivo. The cell-free supernatant of B. stercoris KGMB02265 inhibited lipid accumulation in 3T3-L1 preadipocytes, in which the expression of adipogenic marker genes was repressed. In vivo study showed that the oral administration of B. stercoris KGMB02265 substantially reduced body weight and fat weight in high-fat diet induced obesity in mice. Furthermore, obese mice orally administered with B. stercoris KGMB02265 restored glucose sensitivity and reduced leptin and triglyceride levels. Taken together, our study reveals that B. stercoris KGMB02265 has anti-obesity activity and suggests that it may be a promising candidate for treating obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/complicações , Obesidade , Bacteroides/genética , Camundongos Endogâmicos C57BL
18.
NPJ Biofilms Microbiomes ; 9(1): 103, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110423

RESUMO

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition which is defined by decreased social communication and the presence of repetitive or stereotypic behaviors. Recent evidence has suggested that the gut-brain axis may be important in neurodevelopment in general and may play a role in ASD in particular. Here, we present a study of the gut microbiome in 96 individuals diagnosed with ASD in Israel, compared to 42 neurotypical individuals. We determined differences in alpha and beta diversity in the microbiome of individuals with ASD and demonstrated that the phylum Bacteroidetes and genus Bacteroides were the most significantly over-represented in individuals with ASD. To understand the possible functional significance of these changes, we treated newborn mice with Bacteroides fragilis at birth. B. fragilis-treated male mice displayed social behavior dysfunction, increased repetitive behaviors, and gene expression dysregulation in the prefrontal cortex, while female mice did not display behavioral deficits. These findings suggest that overabundance of Bacteroides, particularly in early life, may have functional consequences for individuals with ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Masculino , Camundongos , Feminino , Animais , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Bacteroides/genética , Modelos Animais de Doenças , Comportamento Social
19.
BJS Open ; 7(6)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-38006331

RESUMO

BACKGROUND: The relationship between intestinal obstruction due to colorectal cancer (CRC) and the gut microbiota remains largely unknown. The aim of this study was to investigate the potential association between alterations in gut microbiota and CRC in the presence of intestinal obstruction. METHODS: Patients with CRC with or without obstruction were recruited and compared using 1:1 propensity score matching (PSM). Total DNA from tumours and adjacent normal tissues of 84 patients and 36 frozen tumour tissues was extracted and amplified. 16S RNA sequencing was used to uncover differences in microbiota composition between the two groups. RESULTS: A total of 313 patients with CRC were recruited. Survival analysis demonstrated that patients in the obstruction group had shorter overall survival time and disease-free survival (DFS) time than those in the non-obstruction group. Microbial richness and diversity in tumour tissues of patients with obstruction were significantly higher than those of patients with no obstruction. The alpha diversity indices and beta diversity exhibited were different between the two groups (P < 0.05). At the phylum and genus levels, Bacteroidetes were significantly enriched in the tumour tissues of patients with obstruction. Alpha diversity in tumour tissues was closely related to specific microbiota. These findings were replicated in the 16S rRNA analyses from frozen samples. There were more Bacteroidetes in CRC patients with obstruction. CONCLUSIONS: Patients with obstructed CRC have worse prognosis and have differences in their microbiota. Higher levels of Bacteroides were observed in patients with obstructed CRC.


Assuntos
Neoplasias Colorretais , Obstrução Intestinal , Microbiota , Humanos , Neoplasias Colorretais/complicações , Neoplasias Colorretais/patologia , Bacteroides/genética , RNA Ribossômico 16S/genética , Estudos Retrospectivos , Microbiota/genética , Obstrução Intestinal/etiologia
20.
J Bacteriol ; 205(11): e0021823, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37874167

RESUMO

IMPORTANCE: The human gut microbiota, including Bacteroides, is required for the degradation of otherwise undigestible polysaccharides. The gut microbiota uses polysaccharides as an energy source, and fermentation products such as short-chain fatty acids are beneficial to the human host. This use of polysaccharides is dependent on the proper pairing of a TonB protein with polysaccharide-specific TonB-dependent transporters; however, the formation of these protein complexes is poorly understood. In this study, we examine the role of 11 predicted TonB homologs in polysaccharide uptake. We show that two proteins, TonB4 and TonB6, may be functionally redundant. This may allow for the development of drugs targeting Bacteroides species containing only a TonB4 homolog with limited impact on species encoding the redundant TonB6.


Assuntos
Bacteroides thetaiotaomicron , Humanos , Bacteroides thetaiotaomicron/metabolismo , Polissacarídeos/metabolismo , Bacteroides/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...